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It is shown that for sufficiently large values of the adiabatic exponent of a gas the solu- 
tion of the problem of diffraction of an arbitrarily intense shock wave at a small angle is 
of a form different from the usual one, and that the solution of this problem takes three 
forms in the general case. The corresponding pressure formulas for the case in question 
are derived. 

The problem of diffraction of an arbitrarily intense shock wave at a small angle was 
first investigated by Lighthill @.I. who, however, did not go so far as to obtain complete 
analytic solution. This was one of the factors which led Ting and Ludloff @] to recon- 
sider the problem using a different method of solution. These authors succeeded in 
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obtaining analytic formulas for the pressure. According to Ludloff [3], the formula for 

the pressure in the case of supersonic flows behind the advancing shock is a sum of four 
terms containing arc cosines. In the case of subsonic flows behind the advancing shock 

two of the terms containing arc cosines must be replaced by suitable terms containing 

hyperbolic arc cosines. From the standpoint of formula structure, this would imply the 
existence of just two forms of the solution of the problem in the general case. 

It was subsequently shown in [4] that the Lighthill method can also be used to general- 

ize the problem all the way to complete analytic formulas. This was demonstrated by 
deriving both forms of the solution for the pressure at the diffracted surface mentioned 

in [3]. 
Further analysis using the Lighthill method showed, however, that the two forms in 

question are generally applicable only if the values of the adiabatic exponent are not 

too large. We propose to show that there exists an entire domain in the plane M,y 
where y is the adiabatic exponent of the gas and M, is the Mach number behind the 
advancing shock) where the solution of the problem assumes a third form different from 
those noted in [3]. 

1. Let a plane shock wave of arbitrary intensity propagate at the velocity U in a qui- 
escent medium bounded by a wall which veers off at a small angle 6 at some point 

(Fig. 1). On reaching the vertex of this angle, the shock wave experiences diffraction 
with the formation of an unsteady flow zone (Mach reflection occurs if 8 < 0 ). 

Fig. 1 Fig. 2 Fig. 3 

In the case of subsonic flow behind the advancing shock the unsteady flow zone is of 
the form shown in Fig. 2; The form of this zone for a supesonic flow is shown on Fig. 3. 

The self-similar coordinates X, y are related to X, Y by the equations 

2 = (X - 2411) / a$, y = Y I a,t 

where u1 and a, are the velocities of gas and sound, respectively, behind the advancing 
shock, and where the time t is measured from the instant of arrival of the shock at the 
vertex. 

The domain ABCA 

x2+y2<19 

Y>O.x<k, 

is defined by the relations 

k = 
C 

(r - ‘JMz+ 2 “’ 
2YW - Cr - 1) 

] jM=$) (1.1) 

Here 1M ls the Mach number of the shock advancing on the angle ; EN AE in Fig. 3 

is the zone of stable Prandtl-Mayer flow. 
The successive transformations 

1) 5 = r cos 8, y =rsinCl, 2) 61 = 8, p = [I - (1 - F2)1j2] F-l 

3) z1 = (k + ik’) {i - [2k’(c - k - ik’)-I]), k’ = f/1 - k2, 5 = pi@1 
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map the domain ABCA into the upper half-plane of the complex plane zl. In the 
plane z1 the shock BC corresponds to the segment z1 > 1 of the real axis; the segment 

CA corresponds to the real-axis segment - 1 < ~1 < 1 ; the circular arc AB cor- 
responds to the real-axis segment z1 < -1. The vertex of the angle has the coordinate 

x0 = - 
(Ml + 42 + (Ml2 - 1) (1 - k2) 

Wlk + I)2 

Linearizationof the corresponding equations of motion reduces the boundary value 
problem under consideration to the analysis of the quantity 

P= 
Pz - Pl 
plulal 

which satisfies the differential equations 

for -I< x1< 1, y1 = 0 (atthewall),and 

aP E6[D(21-z0)-1] 
a&- = - (21 - zo) (1 - 21*p [a + (1 - a)“‘] [p + (1 - Zl)“‘] = FI (d (1.2) 

for I<z~<co, y, = 0 (at the shock BC) 

aP 
asl= 

d (a + P) [D (21 - 50) - 11 

(a- 50) (aa - 1+ 51) (p” - 1 + 21) @I+ 1) 
1,. = F, (4 (1.3) 

Here p2 is the pressure in the unsteady flow zone and p 1 is the density behind the 
advancing shock ; 

a= Jfi?M(Mk$ 1/Mak2-I), p = 1/?iM (Mk + iM2k2 - I)-’ (1.4) 

(Mlk + I)% (a + p) (P + 14 
11 

-1 
2BMl (MI + k) _ ai3 1 

We note that the above relations were generalized for an arbitrary y in [4]; in fl] the 
quantity y is assumed from the very beginning to have the value 1.4. 

2. Expression (1.2) yields the following equation for the pressure at the wall: 

where C,is an integration constant which must be determined. 
Let us consider integral term (2.1). Setting z1 = 1 - E2, we obtain 

1 
2e6 

a& +s - a& 

(h + 5) v2 - E2 +s - 0” - 5) v2 - 5” 
(h = 1/l - CCJ (2.‘2) 
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D(a*--k2)+1 D (pt - Aa) + i i 
a’ = (LB-a2)(a-BP) ’ u2 = (I.*-_*)@-a) ’ 

(cont.) 
aS = - 25(a-_)(g- 11) 

i 
a, = - 

25 (a + V (P + N 

We denote the integrals in the right side of (2.2) by Jv (E (q)) = J, (x1) (Y = 1, 

.a*, 4). Expressions (2.1) and (2.2) now give us 

We can show that 

J1 (q) = v&2 arc sin 
2+a l/i-n 

v-9 (a + 1/G) 

(2.3) 

(2.4) 

for any M, and y . 
Again tor any y we have (2.5) 

Js (4 = ---~a, In cp+ (4, J, (4 = x ~4 In Icp_ 6~) I WI c 1) 

Js (4 = - i xu3 arcsine, (x1), J, (q) = ip, arc sin O_(q) (Mr> 1) 
(2.6) . . 

x = pi-9 0, Pl) = 2* v/(1 - 20) (i - a) 
V/z(pr-- - - 20 f v/i - 21) 

‘p* (Xl) = 
2 (2 * l/u - 20) (i - 21) + v-d + 20) 0 + 21)) 

v/1 f y-i-_ 

8. let us consider the integral J2 (q) separately. To this we make the substitution 
E= z-_B in JB(&). Then 

(3.1) 

We can show that the dlscriminant of the radicand in (3.1) is always negative. More- 
over,(l.4) and (1.1) imply that p = p (M, y), so that 2 - p2 can be regarded as 
some function of M2 and y. If the plane Msy contained some curve at which 2 - 

- /3” = 0, then it would clearly be the boundary between the domains where 2 - 

- p2 < 0 and 2 - #J2 > 0. Let us show that such a curve does indeed exist. 

Making use of (1.4). we can rewrite the condition 2 - f12 < 0 as 

2Mk @fak2 - 1< M” - 2M2k2 + 1 (3.2) 

We can show that the right side of (3.2) is always positive. Explicit expression (1.1) 
for k,enables us to rewrite this condition in the form 

F(Ml,y)=--& M4- sM2-I>0 (3.3) 

Since F (M2, y) = 0 for M2 = 1 and M2 = 1/2 (1 - y), and since 1 - y < 0, 
it follows that the function F (M2, y) has a definite sign in the domain of physical 
values ofM2(more precisely,in that part of the plane .!!f2y where M2 > 1) . In addi- 
tion, since limF(M2,y) = 00 (M2--f m) 

we infer from this that F (M2, y) > 0, i.e. that the right side of (3.2) is positive- 
definite. 
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The left side of (3.2) is also always positive, since, as is easy to show that Mk > 1. 
Hence, both sides of (3.2) can always be squared without violating the inequality. Con- 
dition (3.2) can then be written in the equivalent form 

4M4k2 < M4 + 2M2 + 1 (3.4) 

Making use of explicit expression (1.1) for k, we find from (3.4) that 

Since it is always the case that 2yM2 - (y - 1) > 0, condition (3.5) can be 

written as 2(2-y) Mg +(3y-7)M4 +2M2-(y-i)>0 (3 5) 

The left side of (3.6) is a third-degree polynomial in M2. We can show that one of 

its roots is equal to (y - 1) 12 (2 - y)l-’ and the two other roots to unity. Hence, 
the condition 2 - p2 & 0 can now be written in its final form 

2(2--)(M2-l)2(M2- ‘--’ )>O 
2 (2 - T) 

(3.7) 

The condition 2 - fls = 0 is associated with the curves 

r = 2, M2 = 2 y2:17) = fr (7) (3.8) 

in the plane M2y . Figure 4 shows these curves for the range of physical values of M2. 
(we note that fr (5/s) = 1, and ft (2) = co.) 

Fig. 4 Fig. 5 

Expression (3.7) implies directly that 2 - b” < 0 to the left of the curve ft (Y), 
i.e. in domains (1) and (2). In domain (3) (except at the curve y = 2) we always have 
2 - p” > 0. 

Figure 4 also shows the curve f2 (y), at which MI = 1. This curve can be obtained 

by setting MI= 1 in the familiar expression 

M, = 
2(Ma- 1) 

1/12-N2 - (r - I)1 I(r - 1) ~4% + 21 
(3.9) 

relating Mrand M. We can show that in this case 

Ma= 7-~++P+2~+17 
4 (2 - 7) 

= f2 (7) (f2 (I) = 
3+2v5 , f2 (2) = co) (3.10) 
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The curves fr (7) and fs (y) therefore have the same asymptote y = 2, and since 

fs (y) > fi (y), the foregoing implies that Mr > 1 ln domain (1) and M, < 1 in 
domains (2) and (3). 

Converting from M2, y to the variables M, , y by means of transformation (3.9), 
we find that the indicated domains assume the form shown in Fig. 5 in the plane M,y 
The curves fr (7) and f2 (y) then become 

respectively. 

cplcr) = 
3y - 5 

(7 - i) (3 - I) ’ (PA cr) = 1 (3.11) 

The curve ‘ps (7) shown in this figure corresponds to shock waves of maximum inten- 
sity and is obtainable from (3.9) as 

(3.12) 

It is clear that only the part of the plane M,y which lies below this curve has physi- 

cal meaning. . 

4. We thus have 2 - p”< 0 in domains (1) and (2) of Fig. 5 and 2 - p2 > 0 in 
domain (3) (except at the curve y = 2) . It is now easy to show that 

J, (xl) = (4.1) 
2)-“aarcsin {‘/2 f/Z@ + 81/l--21) (P + l~l--ZJ’) [;)d~~~$s 

a, (2 - p2)-“z In * (x1) in domain (3) 

9 (21) = 
2 (2 -3 Vi - a+ v/(2 - P2) (1 + 51)) 

P+vf-sl 

Turning now to (2.3) and recalling (2.1). we infer from (2.4)-(2.6) and (4.1) that 
the formula for the pressure at the wall in domain (1). i.e. for supersonic flows behind 

the advancing shock, is indeed (as stated in [3]) a sum of four terms containing arc 
cosines. As regards subsonic flows behind the advancing shock, the pressure formula is 

a sum of terms with two arc cosines and two hyperbolic arc cosines as stated in p] only 

in domain (2). 
In the subsonic cases which correspond to domain (3) of Fig. 5 the formula for the pres- 

sure (as is evident from the relations derived above) is a sum of terms containing one 
arc cosine and three hyperbolic arc cosines. Hence, in this case we have the third form 

of the solution of the problem in question which appears to have been overlooked in p]. 

Let us consider this case in more detail, 
Substituting the values of J, (x1) for domain (3) determined from (2.1) into (2.3). 

we obtain the following expression for the pressure at the wall: 

- ln (CJ& (4 + ln I ‘P_ (XI) I - $- (4.2) 

Since the latter expression has a logarithmic singularity at the point 5s (- 1 < 
< 5s < I), it follows that the integration constant c’, for the interval - 1 < 51 < 20 
must also be determined from the condition p (- 1) = 0 ; in the interval 5, < x1 < 
< 1 it must be determined from the condition p (1) = pc,where pc is the pressure at 
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the point C of the shock (Figs. 2 and 3). 
In order to determine pc we must know the pressure distribution at the diffracted shock 

BC . We can do this by integrating (1.3). 

P (d = s Fs (51) & + c, (4.3) 

The integration constant Cs in this expression must be determined from the self-evident 

condition p (00) = 0. This gives us the following formula for the pressure at the dif- 
fracted shock in domain (3) : 

P i+ 21 ‘It 
-- M = s1 arc co9 ( ?/i--21_ 

as _ 1 + 21 1 ++1n - 
v-i+t1+ vm - 

s l* l/1+-- vi+ 
- 3 v/1+ vi+ (4.4) 

The coefficients si - s3 in (4.4) are given by 

Sl = 
2ale 

k I/am’ 
St = 

2%3 
k)/px’ 

s3 = - 
E @+P) 

k (a2 - A$) (p* - V) l/i + zo 

Using the above method to determine the integration constant C,, we obtain the for- 

mulas for the pressure at the wall in domain (3), namely 

’ = ql arc cos 
2+a vi--r -_ 

k6 
_ -iq,l*J$- + 

1/2 (a + 1/i - 51) 

(4.5) 

for - 1 < x1 ( x0 and 

’ = ql arc cos 
2+a vi--z~l -- 

ko 
_ -iq,ln-J$+ + 

1/Z@+ l/i---l) 

-t q3ln 
V~-_+ (ZS 

_ - q,ln 2 $~‘$$_ ) 
wz(‘c/z+ Vc/1+2o) 

- qs (4.6) 
ZO 

fors,<ri<1.. 
Here 

Ql=Slr 42=%, q3= 
2w 2w 

k1/-+ “= kJf/1 

46 = s3 In 1/2-- JqGl 

-r/z+ v/1 

Equations (4.5) and (4.6) imply that the third form of the solution of the problem, i. e. 
the formula for the pressure in domain (3) in Fig. 5 is indeed a sum of terms containing 
a single arc cosine and three hyperbolic arc cosines. 

The author is grateful to S. A. Khristianovich, S. V. Fal’kovich and B. I. Zaslavskii for 
discussing the results and for their interest in the present study. 
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